If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+48x-95=0
a = 48; b = 48; c = -95;
Δ = b2-4ac
Δ = 482-4·48·(-95)
Δ = 20544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20544}=\sqrt{64*321}=\sqrt{64}*\sqrt{321}=8\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{321}}{2*48}=\frac{-48-8\sqrt{321}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{321}}{2*48}=\frac{-48+8\sqrt{321}}{96} $
| (55-x)=(2x-10) | | X+4=3(5x-3) | | 13x-99=108+4x | | 8+3x=x+32 | | 5x-5=20x-200 | | −32c+12=−66c−16 | | 7a+9=16a | | y/8+5/7=y/7-5/7 | | 3t^2-12t-9=0 | | s/2=46 | | 3x-4(2x-9)=5 | | 9+a=45 | | z3=-1331 | | -6x-3(1x+8)=75 | | 2x^2-4x+2=0.5 | | 2w=4w-6=228 | | (5-y)+(6-y)-5-y)=0 | | N+1=-n-5 | | 8+4f+-8=4f+8 | | 5(x-9)=10(x+5) | | 5b−13=37 | | 3y+10+y=70 | | 230+1.14x=536.66 | | 15+10.9r=4.9r | | 3/4x-1/4x+8=20 | | 5x/3-4=11 | | (x+10)(6x-7)=0 | | 3(2x-9)=2(4-5x) | | 5-2n=98-n | | 3r-19=7-10r | | 8+3×n=59 | | (2K^2+4)+(x-3)=0 |